Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38569550

RESUMO

The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.

2.
FASEB J ; 37(12): e23280, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37899680

RESUMO

The development of high-resolution respirometry (HRR) has greatly expanded the analytical scope to study mitochondrial respiratory control relative to specific tissue/cell types across various metabolic states. Specifically, the Oroboros Oxygraph 2000 (O2k) is a common tool for measuring rates of mitochondrial respiration and is the focus of this perspective. The O2k platform is amenable for answering numerous bioenergetic questions. However, inherent variability with HRR-derived data, both within and amongst users, can impede progress in bioenergetics research. Therefore, we advocate for several vital considerations when planning and conducting O2k experiments to ultimately enhance transparency and reproducibility across laboratories. In this perspective, we offer guidance for best practices of mitochondrial preparation, protocol selection, and measures to increase reproducibility. The goal of this perspective is to propagate the use of the O2k, enhance reliability and validity for both new and experienced O2k users, and provide a reference for peer reviewers.


Assuntos
Fosforilação Oxidativa , Consumo de Oxigênio , Reprodutibilidade dos Testes , Respiração Celular , Mitocôndrias/metabolismo
3.
J Physiol ; 601(11): 2189-2216, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35924591

RESUMO

Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a transcriptional programme promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any-MazeTM open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 (1) increased electron transfer system capacity; (2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and (3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. KEY POINTS: Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal ageing. PB125 improved mitochondrial respiration and attenuated disease- and age-related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteostase , Masculino , Feminino , Animais , Cobaias , Fator 2 Relacionado a NF-E2/metabolismo , Músculo Esquelético/fisiologia , Mitocôndrias/metabolismo , Envelhecimento/fisiologia
4.
J Gerontol A Biol Sci Med Sci ; 77(9): 1766-1774, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323931

RESUMO

Older age is the primary risk factor for most chronic diseases, including Alzheimer's disease (AD). Current preclinical models to study brain aging and AD are mainly transgenic and harbor mutations intended to mirror brain pathologies associated with human brain aging/AD (eg, by increasing production of the amyloid precursor protein, amyloid beta [Aß], and/or phosphorylated tau, all of which are key pathological mediators of AD). Although these models may provide insight on pathophysiological processes in AD, none completely recapitulate the disease and its strong age-dependence, and there has been limited success in translating preclinical results and treatments to humans. Here, we describe 2 nontransgenic guinea pig (GP) models, a standard PigmEnTed (PET) strain, and lesser-studied Dunkin-Hartley (DH) strain, that may naturally mimic key features of brain aging and AD in humans. We show that brain aging in PET GP is transcriptomically similar to human brain aging, whereas older DH brains are transcriptomically more similar to human AD. Both strains/models also exhibit increased neurofilament light chain (NFL, a marker of neuronal damage) with aging, and DH animals display greater S100 calcium-binding protein B (S100ß), ionized calcium-binding adapter molecule 1 (Iba1), and Aß and phosphorylated tau-which are all important markers of neuroinflammation-associated AD. Collectively, our results suggest that both the PET and DH GP may be useful, nontransgenic models to study brain aging and AD, respectively.


Assuntos
Doença de Alzheimer , Envelhecimento/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Cobaias , Humanos , Proteínas tau/metabolismo
6.
Geroscience ; 43(2): 809-828, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32761290

RESUMO

Loss of protein homeostasis is a hallmark of the aging process. We and others have previously shown that maintenance of proteostasis is a shared characteristic of slowed-aging models. Rapamycin (Rap) exerts sex-specific effects on murine lifespan, but the combination of Rap with the anti-hyperglycemic drug metformin (Rap + Met) equally increases male and female mouse median lifespan. In the current investigation, we compare the effects of short-term (8 weeks) Rap and Rap + Met treatments on bulk and individual protein synthesis in two key metabolic organs (the liver and skeletal muscle) of young genetically heterogeneous mice using deuterium oxide. We report for the first time distinct effects of Rap and Rap + Met treatments on bulk and individual protein synthesis in young mice. Although there were decreases in protein synthesis as assessed by bulk measurements, individual protein synthesis analyses demonstrate there were nearly as many proteins that increased synthesis as decreased synthesis rates. While we observed the established sex- and tissue-specific effects of Rap on protein synthesis, adding Met yielded more uniform effects between tissue and sex. These data offer mechanistic insight as to how Rap + Met may extend lifespan in both sexes while Rap does not.


Assuntos
Metformina , Sirolimo , Animais , Feminino , Longevidade , Masculino , Metformina/farmacologia , Camundongos , Biossíntese de Proteínas , Caracteres Sexuais , Sirolimo/farmacologia
7.
Front Physiol ; 11: 571372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192568

RESUMO

Skeletal muscle dysfunction, articular cartilage degeneration, and bone loss occur essentially in parallel during aging. Mechanisms contributing to this systemic musculoskeletal decline remain incompletely understood, limiting progress toward developing effective therapeutics. Because the progression of human musculoskeletal aging is slow, researchers rely on rodent models to identify mechanisms and test interventions. The Dunkin Hartley guinea pig is an outbred strain that begins developing primary osteoarthritis by 4 months of age with a progression and pathology similar to aging humans. The purpose of this study was to determine if skeletal muscle remodeling during the progression of osteoarthritis in these guinea pigs resembles musculoskeletal aging in humans. We compared Dunkin Hartley guinea pigs to Strain 13 guinea pigs, which develop osteoarthritis much later in the lifespan. We measured myofiber type and size, muscle density, and long-term fractional protein synthesis rates of the gastrocnemius and soleus muscles in 5, 9, and 15-month-old guinea pigs. There was an age-related decline in skeletal muscle density, a greater proportion of smaller myofibers, and a decline in type II concomitant with a rise in type I myofibers in the gastrocnemius muscles from Dunkin Hartley guinea pigs only. These changes were accompanied by age-related declines in myofibrillar and mitochondrial protein synthesis in the gastrocnemius and soleus. Collectively, these findings suggest Dunkin Hartley guinea pigs experience myofiber remodeling alongside the progression of osteoarthritis, consistent with human musculoskeletal aging. Thus, Dunkin Hartley guinea pigs may be a model to advance discovery and therapeutic development for human musculoskeletal aging.

9.
J Gerontol A Biol Sci Med Sci ; 75(1): 32-39, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30820523

RESUMO

mTOR inhibition extends life span in multiple organisms. In mice, when metformin treatment (Met) is added to the mTOR inhibitor rapamycin (Rap), median and maximal life span is extended to a greater degree than with Rap or Met alone. Treatments that extend life span often maintain proteostasis. However, it is less clear how individual tissues, such as skeletal muscle, maintain proteostasis with life span-extending treatments. In C2C12 myotubes, we used deuterium oxide (D2O) to directly measure two primary determinants of proteostasis, protein synthesis, and degradation rates, with Rap or Met+Rap treatments. We accounted for the independent effects of cell growth and loss, and isolated the contribution of autophagy and mitochondrial fission to obtain a comprehensive assessment of protein turnover. Compared with control, both Rap and Met+Rap treatments lowered mitochondrial protein synthesis rates (p < .001) and slowed cellular proliferation (p < .01). These changes resulted in greater activation of mechanisms promoting proteostasis for Rap, but not Met+Rap. Compared with control, both Rap and Met+Rap slowed protein breakdown. Autophagy and mitochondrial fission differentially influenced the proteostatic effects of Rap and Met+Rap in C2C12 myotubes. In conclusion, we demonstrate that Met+Rap did not increase protein turnover and that these treatments do not seem to promote proteostasis through increased autophagy.


Assuntos
Longevidade/efeitos dos fármacos , Metformina/farmacologia , Mioblastos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Western Blotting , Células Cultivadas , Humanos , Hipoglicemiantes/farmacologia , Imunossupressores/farmacologia , Lisossomos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efeitos dos fármacos , Transdução de Sinais , Serina-Treonina Quinases TOR/efeitos dos fármacos
10.
Sports (Basel) ; 7(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336753

RESUMO

Oxidative damage is one mechanism linking aging with chronic diseases including the progressive loss of skeletal muscle mass and function called sarcopenia. Thus, mitigating oxidative damage is a potential avenue to prevent or delay the onset of chronic disease and/or extend healthspan. Mitochondrial hormesis (mitohormesis) occurs when acute exposure to stress stimulates adaptive mitochondrial responses that improve mitochondrial function and resistance to stress. For example, an acute oxidative stress via mitochondrial superoxide production stimulates the activation of endogenous antioxidant gene transcription regulated by the redox sensitive transcription factor Nrf2, resulting in an adaptive hormetic response. In addition, acute stresses such as aerobic exercise stimulate the expansion of skeletal muscle mitochondria (i.e., mitochondrial biogenesis), constituting a mitohormetic response that protects from sarcopenia through a variety of mechanisms. This review summarized the effects of age-related declines in mitochondrial and redox homeostasis on skeletal muscle protein homeostasis and highlights the mitohormetic mechanisms by which aerobic exercise mitigates these age-related declines and maintains function. We discussed the potential efficacy of targeting the Nrf2 signaling pathway, which partially mediates adaptation to aerobic exercise, to restore mitochondrial and skeletal muscle function. Finally, we highlight knowledge gaps related to improving redox signaling and make recommendations for future research.

11.
J Cachexia Sarcopenia Muscle ; 10(6): 1195-1209, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31313502

RESUMO

BACKGROUND: Successful strategies to halt or reverse sarcopenia require a basic understanding of the factors that cause muscle loss with age. Acute periods of muscle loss in older individuals have an incomplete recovery of muscle mass and strength, thus accelerating sarcopenic progression. The purpose of the current study was to further understand the mechanisms underlying the failure of old animals to completely recover muscle mass and function after a period of hindlimb unloading. METHODS: Hindlimb unloading was used to induce muscle atrophy in Fischer 344-Brown Norway (F344BN F1) rats at 24, 28, and 30 months of age. Rats were hindlimb unloaded for 14 days and then reloaded at 24 months (Reloaded 24), 28 months (Reloaded 28), and 24 and 28 months (Reloaded 24/28) of age. Isometric torque was determined at 24 months of age (24 months), at 28 months of age (28 months), immediately after 14 days of reloading, and at 30 months of age (30 months). During control or reloaded conditions, rats were labelled with deuterium oxide (D2 O) to determine rates of muscle protein synthesis and RNA synthesis. RESULTS: After 14 days of reloading, in vivo isometric torque returned to baseline in Reloaded 24, but not Reloaded 28 and Reloaded 24/28. Despite the failure of Reloaded 28 and Reloaded 24/28 to regain peak force, all groups were equally depressed in peak force generation at 30 months. Increased age did not decrease muscle protein synthesis rates, and in fact, increased resting rates of protein synthesis were measured in the myofibrillar fraction (Fractional synthesis rate (FSR): %/day) of the plantaris (24 months: 2.53 ± 0.17; 30 months: 3.29 ± 0.17), and in the myofibrillar (24 months: 2.29 ± 0.07; 30 months: 3.34 ± 0.11), collagen (24 months: 1.11 ± 0.07; 30 months: 1.55 ± 0.14), and mitochondrial (24 months: 2.38 ± 0.16; 30 months: 3.20 ± 0.10) fractions of the tibialis anterior (TA). All muscles increased myofibrillar protein synthesis (%/day) in Reloaded 24 (soleus: 3.36 ± 0.11, 5.23 ± 0.19; plantaris: 2.53 ± 0.17, 3.66 ± 0.07; TA: 2.29 ± 0.14, 3.15 ± 0.12); however, in Reloaded 28, only the soleus had myofibrillar protein synthesis rates (%/day) >28 months (28 months: 3.80 ± 0.10; Reloaded 28: 4.86 ± 0.19). Across the muscles, rates of protein synthesis were correlated with RNA synthesis (all muscles combined, R2 = 0.807, P < 0.0001). CONCLUSIONS: These data add to the growing body of literature that indicate that changes with age, including following disuse atrophy, differ by muscle. In addition, our findings lead to additional questions of the underlying mechanisms by which some muscles are maintained with age while others are not.


Assuntos
Envelhecimento/patologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Transtornos Musculares Atróficos/fisiopatologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Elevação dos Membros Posteriores/efeitos adversos , Masculino , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo , Tamanho do Órgão , Biossíntese de Proteínas , Ratos , Ratos Endogâmicos F344 , Torque
12.
Front Physiol ; 10: 649, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191347

RESUMO

Purpose: High-load resistance exercise contributes to maintenance of muscle mass, muscle protein quality, and contractile function by stimulation of muscle protein synthesis (MPS), hypertrophy, and strength gains. However, high loading may not be feasible in several clinical populations. Low-load blood flow restricted resistance exercise (BFRRE) may provide an alternative approach. However, the long-term protein synthetic response to BFRRE is unknown and the myocellular adaptations to prolonged BFRRE are not well described. Methods: To investigate this, 34 healthy young subjects were randomized to 6 weeks of low-load BFRRE, HLRE, or non-exercise control (CON). Deuterium oxide (D2O) was orally administered throughout the intervention period. Muscle biopsies from m. vastus lateralis were collected before and after the 6-week intervention period to assess long-term myofibrillar MPS and RNA synthesis as well as muscle fiber-type-specific cross-sectional area (CSA), satellite cell content, and myonuclei content. Muscle biopsies were also collected in the immediate hours following single-bout exercise to assess signaling for muscle protein degradation. Isometric and dynamic quadriceps muscle strength was evaluated before and after the intervention. Results: Myofibrillar MPS was higher in BFRRE (1.34%/day, p < 0.01) and HLRE (1.12%/day, p < 0.05) compared to CON (0.96%/day) with no significant differences between exercise groups. Muscle RNA synthesis was higher in BFRRE (0.65%/day, p < 0.001) and HLRE (0.55%/day, p < 0.01) compared to CON (0.38%/day) and both training groups increased RNA content, indicating ribosomal biogenesis in response to exercise. BFRRE and HLRE both activated muscle degradation signaling. Muscle strength increased 6-10% in BFRRE (p < 0.05) and 13-23% in HLRE (p < 0.01). Dynamic muscle strength increased to a greater extent in HLRE (p < 0.05). No changes in type I and type II muscle fiber-type-specific CSA, satellite cell content, or myonuclei content were observed. Conclusions: These results demonstrate that BFRRE increases long-term muscle protein turnover, ribosomal biogenesis, and muscle strength to a similar degree as HLRE. These findings emphasize the potential application of low-load BFRRE to stimulate muscle protein turnover and increase muscle function in clinical populations where high loading is untenable.

14.
Aging Cell ; 18(1): e12880, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548390

RESUMO

Metformin and exercise independently improve insulin sensitivity and decrease the risk of diabetes. Metformin was also recently proposed as a potential therapy to slow aging. However, recent evidence indicates that adding metformin to exercise antagonizes the exercise-induced improvement in insulin sensitivity and cardiorespiratory fitness. The purpose of this study was to test the hypothesis that metformin diminishes the improvement in insulin sensitivity and cardiorespiratory fitness after aerobic exercise training (AET) by inhibiting skeletal muscle mitochondrial respiration and protein synthesis in older adults (62 ± 1 years). In a double-blinded fashion, participants were randomized to placebo (n = 26) or metformin (n = 27) treatment during 12 weeks of AET. Independent of treatment, AET decreased fat mass, HbA1c, fasting plasma insulin, 24-hr ambulant mean glucose, and glycemic variability. However, metformin attenuated the increase in whole-body insulin sensitivity and VO2 max after AET. In the metformin group, there was no overall change in whole-body insulin sensitivity after AET due to positive and negative responders. Metformin also abrogated the exercise-mediated increase in skeletal muscle mitochondrial respiration. The change in whole-body insulin sensitivity was correlated to the change in mitochondrial respiration. Mitochondrial protein synthesis rates assessed during AET were not different between treatments. The influence of metformin on AET-induced improvements in physiological function was highly variable and associated with the effect of metformin on the mitochondria. These data suggest that prior to prescribing metformin to slow aging, additional studies are needed to understand the mechanisms that elicit positive and negative responses to metformin with and without exercise.


Assuntos
Adaptação Fisiológica , Exercício Físico , Metformina/farmacologia , Mitocôndrias/metabolismo , Idoso , Glicemia/metabolismo , Aptidão Cardiorrespiratória , Respiração Celular/efeitos dos fármacos , Feminino , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Homeostase do Telômero/efeitos dos fármacos
15.
Eur J Appl Physiol ; 118(1): 1-9, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986697

RESUMO

Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.


Assuntos
Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Esquelético/crescimento & desenvolvimento , Proteostase , Animais , Exercício Físico , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia
16.
Front Physiol ; 9: 1883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687111

RESUMO

Sarcopenia is the loss of muscle mass, strength, and physical function that is characteristic of aging. The progression of sarcopenia is gradual but may be accelerated by periods of muscle loss during physical inactivity secondary to illness or injury. The loss of mobility and independence and increased comorbidities associated with sarcopenia represent a major healthcare challenge for older adults. Mitochondrial dysfunction and impaired proteostatic mechanisms are important contributors to the complex etiology of sarcopenia. As such, interventions that target improving mitochondrial function and proteostatic maintenance could mitigate or treat sarcopenia. Exercise is currently the only effective option to treat sarcopenia and does so, in part, by improving mitochondrial energetics and protein turnover. Exercise interventions also serve as a discovery tool to identify molecular targets for development of alternative therapies to treat sarcopenia. In summary, we review the evidence linking mitochondria and proteostatic maintenance to sarcopenia and discuss the therapeutic potential of interventions addressing these two factors to mitigate sarcopenia.

17.
Front Physiol ; 9: 1796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618808

RESUMO

Purpose: It is well established that high-load resistance exercise (HLRE) can stimulate myofibrillar accretion. Additionally, recent studies suggest that HLRE can also stimulate mitochondrial biogenesis and respiratory function. However, in several clinical situations, the use of resistance exercise with high loading may not constitute a viable approach. Low-load blood flow restricted resistance exercise (BFRRE) has emerged as a time-effective low-load alternative to stimulate myofibrillar accretion. It is unknown if BFRRE can also stimulate mitochondrial biogenesis and respiratory function. If so, BFRRE could provide a feasible strategy to stimulate muscle metabolic health. Methods: To study this, 34 healthy previously untrained individuals (24 ± 3 years) participated in BFRRE, HLRE, or non-exercise control intervention (CON) 3 times per week for 6 weeks. Skeletal muscle biopsies were collected; (1) before and after the 6-week intervention period to assess mitochondrial biogenesis and respiratory function and; (2) during recovery from single-bout exercise to assess myocellular signaling events involved in transcriptional regulation of mitochondrial biogenesis. During the 6-week intervention period, deuterium oxide (D2O) was continuously administered to the participants to label newly synthesized skeletal muscle mitochondrial proteins. Mitochondrial respiratory function was assessed in permeabilized muscle fibers with high-resolution respirometry. Mitochondrial content was assessed with a citrate synthase activity assay. Myocellular signaling was assessed with immunoblotting. Results: Mitochondrial protein synthesis rate was higher with BFRRE (1.19%/day) and HLRE (1.15%/day) compared to CON (0.92%/day) (P < 0.05) but similar between exercise groups. Mitochondrial respiratory function increased to similar degree with both exercise regimens and did not change with CON. For instance, coupled respiration supported by convergent electron flow from complex I and II increased 38% with BFRRE and 24% with HLRE (P < 0.01). Training did not alter citrate synthase activity compared to CON. BFRRE and HLRE elicited similar myocellular signaling responses. Conclusion: These results support recent findings that resistance exercise can stimulate mitochondrial biogenesis and respiratory function to support healthy skeletal muscle and whole-body metabolism. Intriquingly, BFRRE produces similar mitochondrial adaptations at a markedly lower load, which entail great clinical perspective for populations in whom exercise with high loading is untenable.

18.
J Appl Physiol (1985) ; 123(6): 1516-1524, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28883046

RESUMO

The 2016 Colorado Trail Race (CTR) was an ultra-endurance mountain bike race in which competitors cycled for up to 24 h/day between altitudes of 1,675 and 4,025 m to complete 800 km and 21,000 m of elevation gain. In one athlete, we had the unique opportunity to characterize skeletal muscle protein synthesis and mitochondrial respiration in response to a normal activity control period (CON) and the CTR. We hypothesized that mitochondrial protein synthesis would be elevated and mitochondrial respiration would be maintained during the extreme stresses of the CTR. Titrated and bolus doses of ADP were provided to determine substrate-specific oxidative phosphorylation (OXPHOS) and electron transport system (ETS) capacities in permeabilized muscle fibers via high-resolution respirometry. Protein synthetic rates were determined by daily oral consumption of deuterium oxide (2H2O). The endurance athlete had OXPHOS (226 pmol·s-1·mg tissue-1) and ETS (231 pmol·s-1·mg tissue-1) capacities that rank among the highest published to date in humans. Mitochondrial (3.2-fold), cytoplasmic (2.3-fold), and myofibrillar (1.5-fold) protein synthesis rates were greater during CTR compared with CON. With titrated ADP doses, the apparent Km of ADP, OXPHOS, and ETS increased after the CTR. With provision of ADP boluses after the CTR, the addition of fatty acids (-12 and -14%) mitigated the decline in OXPHOS and ETS capacity during carbohydrate-supported respiration (-26 and -31%). In the face of extreme stresses during the CTR, elevated rates of mitochondrial protein synthesis may contribute to rapid adaptations in mitochondrial bioenergetics. NEW & NOTEWORTHY The mechanisms that maintain skeletal muscle function during extreme stresses remain incompletely understood. In the current study, greater rates of mitochondrial protein synthesis during the energetic demands of ultra-endurance exercise may contribute to rapid adaptations in mitochondrial bioenergetics. The endurance athlete herein achieved mitochondrial respiratory capacities among the highest published for humans. Greater mitochondrial protein synthesis during ultra-endurance exercise may contribute to improved mitochondrial respiration and serve as a mechanism to resist cellular energetic stresses.


Assuntos
Ciclismo/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/biossíntese , Músculo Esquelético/fisiologia , Biossíntese de Proteínas , Adulto , Respiração Celular , Metabolismo Energético , Humanos , Masculino , Fosforilação Oxidativa , Consumo de Oxigênio , Resistência Física
19.
Geroscience ; 39(2): 175-186, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28283797

RESUMO

In older adults, chronic oxidative and inflammatory stresses are associated with an impaired increase in skeletal muscle protein synthesis after acute anabolic stimuli. Conjugated linoleic acid (CLA) and Protandim have been shown to activate nuclear factor erythroid-derived 2-like 2 (Nrf2), a transcription factor for the antioxidant response element and anti-inflammatory pathways. This study tested the hypothesis that compared to a placebo control (CON), CLA and Protandim would increase skeletal muscle subcellular protein (myofibrillar, mitochondrial, cytoplasmic) and DNA synthesis in older adults after 6 weeks of milk protein feeding. CLA decreased oxidative stress and skeletal muscle oxidative damage with a trend to increase messenger RNA (mRNA) expression of a Nrf2 target, NAD(P)H dehydrogenase quinone 1 (NQO1). However, CLA did not influence other Nrf2 targets (heme oxygenase-1 (HO-1), glutathione peroxidase 1 (Gpx1)) or protein or DNA synthesis. Conversely, Protandim increased HO-1 protein content but not the mRNA expression of downstream Nrf2 targets, oxidative stress, or skeletal muscle oxidative damage. Rates of myofibrillar protein synthesis were maintained despite lower mitochondrial and cytoplasmic protein syntheses after Protandim versus CON. Similarly, DNA synthesis was non-significantly lower after Protandim compared to CON. After Protandim, the ratio of protein to DNA synthesis tended to be greater in the myofibrillar fraction and maintained in the mitochondrial and cytoplasmic fractions, emphasizing the importance of measuring both protein and DNA synthesis to gain insight into proteostasis. Overall, these data suggest that Protandim may enhance proteostatic mechanisms of skeletal muscle contractile proteins after 6 weeks of milk protein feeding in older adults.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Ácidos Linoleicos Conjugados/uso terapêutico , Proteínas do Leite/uso terapêutico , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Idoso , Método Duplo-Cego , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...